O CÃO (Canis familiaris) COMO UNIDADE EXPERIMENTAL PARA AS CERATOPLASTIAS XENÓGENAS

The dog (Canis familiaris) as an experimental unit to xenogenous keratoplasty

Nilo Sérgio Troncoso Chaves¹, Paulo Sérgio de Moraes Barros², Apóstolo Ferreira Martins³, Eugênio Gonçalves de Araújo⁴, Larissa Franco de Araújo⁵, Duvaldo Eurides⁶, Clausmir Zanetti Jacomini⁷

RESUMO

Vinte cães, sem raça definida, com peso médio 10kg, foram separados em dois grupos de igual número. Os animais de ambos os grupos receberam xenoenxertos penetrantes com córneas de suínos. Os animais do grupo 1, foram tratados com colírio de ciclosporina A (2%) e de gentamicina. Os do grupo 2, com corticosteroides tópico e parenteral e gentamicina colírio. No pós-operatório (PO), cada grupo foi submetido a uma proteção na cabeça, semelhante ao colar elizabetano. Os cães do grupo 1 permaneceram vivos durante o experimento e não interferiram nos implantantes. No grupo 2, cinco cães permaneceram vivos, três foram sacrificados entre o 14° e 21° dia do PO, devido os efeitos colaterais dos corticosteroides, porém oito cães não interferiram nos enxertos. Dois dos animais se auto-traumatizaram inviabilizando os implantantes. O cão (Canis familiaris) suporta bem o enxaqueamento, anestesias barbitúricas múltiplas e é disciplinado quanto à sua própria higiene e alimentação. O cão sem raça definida é uma boa unidade experimental, contrariando a maioria dos pesquisadores, que preferem o coelho e a galinha como receptores de córnea.

Palavras-chave: canino, suino, xenotransplante, córnea.

SUMMARY

Twenty mixed breed dogs, with a 10 kg average weight, were divided into two groups and received swine cornea penetrating xenografts. The dogs from Group 1 were treated with 2% cyclosporin and gentamicin sulfate in the form of eye drops. The animals from Group 2 were treated with corticosteroids and gentamicin sulfate eye drops. After surgery each animal had a head protector, resembling an E-collar, installed. Of Group 1, all ten dogs finished the trial alive and without impairing the implant. In Group 2, five dogs finished the trial alive, three dogs were sacrificed between days 14 and 21 PO, due to corticosteroid side effects. These dogs, however, did not interfere with the grafts. Two of the animals hurt themselves, impairing the grafts, and had to be sacrificed. The dogs did not try to get out of the cage frequently, had good hygiene and feeding discipline and could stand multiple barbiturate anesthesia. Additionally, due to the large number of abandoned dogs on the streets, there are animals available that can be used for experiments, respecting the rules of animal protection. Although two animals (10%) destroyed the graft, dogs were found to be useful experimental units. This contradicts the opinion of many researchers who prefer rabbits or chickens as cornea receptors.

key words: canine, swine, xenotransplant, cornea.

¹ Médico Veterinário. Professor Adjunto. Doutor. Escola de Veterinária/EV. Departamento de Clínica. Universidade Federal de Goiás/UFG. Campus Samambaia, CxP 131, 74001-970, Goiânia, GO.
³ Médico Veterinário. Hospital Veterinário/EV/UFG.
⁴ Médico Veterinário. Professor Adjunto. Mestre. Departamento de Patologia/EV/UFG.
⁵ Acadêmico. Bolsista/EV/UFG.
⁷ Médico. Professor Adjunto. Departamento de Histologia. Instituto de Ciências Biológicas/UFG.
INTRODUÇÃO

Vários pesquisadores tentaram o heterotransplantes de córnea no século 19, porém, os melhores resultados ocorreram na década de 60. Neste período ROCHA (1962), já recomendava a necessidade de estudar os xenoexertos, sendo que muitos dos animais foram utilizados como doadores e outros como receptores.

DORLHAGEM (1834) e BIGGER (1837), descreveram o xenoexerto de córnea de suínos, ZHENDE (1880) utilizou a córnea de cão, CIEN FUEGOS (1881) a de coelho e FINK (1895) a de gato, sendo o homem o receptor. Tentando encontrar doadores e receptores adequados para as ceratoplastias BASU & ORMSBY (1957), realizaram xeno-transplantes em coelhos utilizando como doadores, galinha, peru e pato, sendo a córnea de galinha a que apresentou melhores resultados. Entre os mamíferos utilizaram o macaco, o cordeiro e o bovino e definiram que o material de aves foram melhores que o dos mamíferos. CHAVAN & KING (1960), realizaram xenotransplantes lamelares em coelhos com córneas frescas de humanos, equinos, macacos, felines e caninos e concluíram que a córnea humana foi a que apresentou menor reação anticorpuscular. PAYRAU et al. (1961), trabalharam com material fresco e silicodessecado, tendo vários modelos como doadores e diferentes receptores. Concluíram que as córneas silicodessecadas são menos anticorpusculares do que as frescas; que o cão mostrou-se excelente doador para o coelho e a vitela, enquanto o coelho revelou-se mau receptor para o homem, vitela, suino e cão. Como doadores, foram considerados bons a vitela e o coelho para o cão. Não foram observados por CASANOVAS et al. (1962), diferenças entre os xenoexertos em coelhos com córneas silicodessecadas de cão e vitela. RENKY (1962), no entanto, descreveu o cão como bom doador para o homem e a vitela para o coelho.

MENEZES & QUINTANA (1963), PAUL & AHUJA (1965) e DOUHAMANN et al. (1976), encontraram os mesmos resultados de PAYRAU et al. (1961), com relação a córneas conservadas e não conservadas. Porém, MENEZES & QUINTANA (1963), implantaram córneas humanas, de vitela e de cão em coelhos e não registraram qualquer caso de eliminação do enxerto por necrose ou intolerância e nem qualquer diferença das córneas humanas e de animais.

Os trabalhos recentes de xenotransplantes foram realizados por PANCHABAHI & KULKARNI (1987), que implantaram córneas de bullos em bullos com resultados não encorajadores, pois os enxertos tiveram apenas 75% de transparência.

O presente experimento teve como objetivo avaliar o cão (Canis familiaris) como unidade experimental para as ceratoplastias xenogênicas.

MATERIAIS E MÉTODOS

Vinte 20 cães, sem raça definida, machos e fêmeas, com peso médio de 10kg, foram separados em dois grupos iguais. No grupo 1, os animais foram identificados com coleiras de couro, numeradas de 1 a 10 e no grupo 2, da mesma forma, com coleiras numeradas de 11 a 20. Os animais de ambos os grupos receberam xenoexertos penetrantes de córneas de suínos abatidos em frigorífico. O protocolo anestésico para os animais foi constituído da administração de xilazinana, thiopental sódico e bupivacaina e, porém, submetidos a medicamentos diferentes durante o período pós-operatório. Os animais do grupo 1, foram tratados com colírio de ciclosporina A (2%) e de sulfato de gentamicina. Os do grupo 2, com colírio de fosfato dissódico de betametasona e de sulfato de gentamicina e fosfato dissódico/acetato de dexametasona, via intramuscular. Após o implante, cada animal foi submetido a proteção da cabeça com colar de plástico semelhante ao elizabethano. Os cães foram mantidos em baias individuais que eram lavadas, desinfetadas e flanadas diariamente. Os animais foram retirados das baias no horário da 11:00 às 12:00 horas para tomarem sol, em solário coletivo e alimentados com ração industrial e carneh, uma vez ao dia.

RESULTADOS

Os animais do grupo 1, além de não interferirem nos implantes, não apresentaram ressalvas dignas de considerações. No grupo 2, cinco cães vieram a óbito e três foram sacrificados entre o 14º e o 21º dia de PO, devido aos efeitos colaterais dos corticosteróides, porém não interferiram nos enxertos, e dois (10%) se autotraumatizaram inviabilizando os implantes.

DISCUSSÃO

Desde o início da aplicação dos primeiros implantes de córnea, pesquisadores já se preocuparam em encontrar bons receptores e
bons doadores, testar materiais frescos e conservados, técnicas de conservação de córnea, técnicas cirúrgicas e equipamentos e elucidar fenômenos imunológicos (BUSU & ORMSBY, 1957; CHAVAN & KING, 1961; PYRAY et al., 1961; CASANOVA et al., 1962). No entanto, não fizeram comentários sobre o comportamento do receptor, ou seja, um animal dócil, que pudesse ser observado a longo prazo, de fácil manejo e alimentação e não destrusse deliberadamente o enxerto, como observado neste trabalho.

Neste experimento observou-se que apenas dois (10%) dos cães interferiram no enxerto. O cão suportou bem o enjaulamento e foi disciplinado quanto a sua própria higiene e alimentação. Resistiu bem às anestesias barbitúricas, além disso, a oferta do cão (Canis familiaris) é boa, respeitando-se as regras fundamentais de proteção animal.

CONCLUSÕES

Embora dois animais (10%) se auto-traumatizaram inviabilizando o enxerto, o cão sem raça definida (Canis familiaris) apresenta-se como boa alternativa para realização de experimentos oftalmológicos. É um animal dócil, de fácil manejo e alimentação, contrastando a maioria dos pesquisadores, que preferiam o coelho e a galinha como receptores de córnea.

MATERIAIS DA PESQUISA

b. Thionembutal. Laboratório. Abbott. São Paulo, SP.
c. Bupivacaina. Laboratório. Ceme. Goiânia, GO.
d. Ciclosporina A (2%) colírio. Laboratório. Drogana. Goiânia, GO.
e. Gentamicina “ocullum” colírio. Laboratório. Frumtost. São Paulo, SP.
g. Duo-decadron. Laboratório. Prodomo. São Paulo, SP.
h. Fri-Cão. Indústria. Fri-ribe. São Paulo, SP.

REFERÊNCIAS BIBLIOGRÁFICAS


