Uso de dados geofísicos em estudosgeomorfológicos nosMunicípios de Gouveia e Datasserra do Espinhaço, Minas Gerais.

- Adriana Mezzano - Mestranda Geografia, Departamento de Geografia, Instituto de Geociências - UFMG.
- Paulo Roberto Antunes Aranha - Departamento de Geologia, Instituto de Geociências - UFMG.
- Guilherme Taitson Bueno - Bolsista iniciação científica - Departamento de Geografia, Instituto de Geociências - UFMG.
- Ronaldo Belém - Bolsista iniciação científica - Departamento de Geografia, Instituto de Geociências - UFMG.
- Cristina H. R. R. Augustin - Departamento de Geografia, Instituto de Geociências - UFMG.

Endereço:
Instituto de Geociências - UFMG
Av. Antônio Carlos, 6627
Campus Pampulha.
Belo Horizonte, Minas Gerais.
Tel: (031) 499 5404 - Fax: (031) 499 5410
CEP: 31.270-901
amezza@oraculo.lcc.ufmg.br

Abstract. The aim of this paper is to show the utilization of geophysical methods in assessing geomorphological difference between two study areas. Both of them, Gouveia and Datas, are located at Espinhaço Mountain range in Minas Gerais, Brazil, and present distinctive landforms, although being geographically very close to each other. Geophysical approach was used to find out the depth of the weathered mantle as well as that of the ground water table.

Keywords: Geophysics methods, Geomorphology, Gully

Introdução

Trabalhos recentes vêm apontando para a utilização potencial de métodos geofísicos em pesquisas básicas em pedologia e geomorfologia (ARANHA et al 1996). Dados que são obtidos somente à partir de informações indiretas ou onerosas podem, à partir do uso da geofísica, ser mais facilmente disponibilizados para análise.

O presente trabalho apresenta os dados de estudo no qual se emprega esse tipo de abordagem. Nele são comparados os dados de parâmetros considerados importantes para um estudo geomorfológico: espessura do mantos de alteração e altura do lençol freático, de duas áreas geograficamente próximas, mas que são distintas do ponto de vista de suas formas de relevo e mesmo da cobertura vegetal.

Os dados apresentados aqui fazem parte de uma linha de pesquisa que iniciou-se na área, na década de 1980 e que originou entre outros trabalhos, tese de doutorado (AUGUSTIN, 1995), mestrado (ALMEIDA ABREU, 1989) e várias monografias. A segunda série de SEVs e sua análise é parte integrante dos trabalhos de pesquisa de uma das tese de mestrade que está sendo desenvolvida na área, dando continuidade ao projeto de estudos iniciado na década passada.

Localização e Caracterização geral da área

A região norte do município de Gouveia, em sua porção compreendida entre as bacias do Corrego do
Chiqueiro (a NE) e do Areia (NW), é caracterizada pela presença de um grande número de voçorocas (fig. 1).

Esta área tem sido objeto de estudos sistematizados de geomorfologia desde 1985 (AUGUSTIN, 1995) em função dessa concentração de formas de erosão acelerada.

Segundo Augustin (1995), identifica-se no município de Gouveia 5 grandes unidades morfoestruturais. A primeira, situada entre 1450 a 1300 m de altitude, corresponde a antiga superfície de erosão desenvolvida sobre rochas quartzíticas da Formação São João da Chapada. A segunda, compreendida entre 1300 a 1200 m, representa o retrabalhamento de ortoquartzitos finos, muito diaclastados, da Formação Galho do Miguel. Ambas as formações fazem parte do Super-Grupo Espinhaço, o mais importante da região.

A terceira superfície, denominada “Superficie Residual Antiga”, se encontra em altitudes que variam de 1200 a 1000 m e foi elaborada sobre os xistos do Grupo Costa Sena, pertencente ao Super Grupo Rio Parauã. É uma área caracterizada pela ocorrência de solos muito intemperizados e manto de alteração relativamente espessos. A quarta unidade, denominada pela autora como “Superficie de Retrabalhamento Recente” encontra-se elaborada em áreas abaixo de 1000 m de altitude, onde predominam granitóides do complexo de Gouveia, pertencentes ao Embasamento Cristalino, e rochas básicas e metabásicas.

Dados é um município vizinho de Gouveia, situando-se em seu limite NE (fig.1). O substrato rochoso da área estudada desse município é formado por rochas das formações São João da Chapada e Galho do Miguel. No entanto, o relevo é formado por vertentes mais abruptas comparadas aquelas da região de Gouveia, além de contarem com tops mais curtos, bem como com vales mais encaixados.

Metodologia

Utilizando-se o método de Schlumberger, foram realizadas uma série de sondagens Elétricas Verticais (S.E.V.), nos arredores da cidade de Gouveia, em dois trabalhos de campo.

No primeiro trabalho de campo foram feitos 10 SEV’s, nas proximidades das voçorocas 2, 3 e 13 (fig.1), localizadas aproximadamente a oeste da depressão de Gouveia, que neste trabalho será denominada “Região A”. Essa região corresponde ao contato entre a terceira e quarta unidades morfoestruturais descritas por Augustin (1995, op. cit). A SEV realizada na voçoroca 2 foi com orientação perpendicular ao eixo da voçoroca, do mesmo modo que nas voçorocas 3 e 13.

Realizaram-se também sete SEV’s ao longo da vertente, quatro à direita da voçoroca 3 e mais três entre as voçorocas 3 e 13 (fig.1).

Os dados foram tratados no gabinete mediante a utilização do software “Sevschlu”.

Discussão dos resultados da “Região A”

Nas SEV’s realizadas nesta região percebeu-se uma resposta similar. Os valores da resistividade descem até atingir valores próximos aos 200 Ω que indicam profundidades médias, também, de 15 m, depois das resistividades que marcavam a presença de um solo coluvial. Nessa profundidade de 15 m localizaria-se a zona saturada do lençol freático. A baixo dos 15 m as eletrorresistividades voltam a apresentar um aumento acentuado, o que está indicando uma mudança na resposta do material à passagem da corrente. Isso é atribuível a uma mudança na porosidade dos materiais e que estaria indicando a presença da rocha só, ou seja com menor índice de intemperismo.

<table>
<thead>
<tr>
<th>Espessura (m)</th>
<th>Resistividade (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEV 1</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>15,5</td>
</tr>
<tr>
<td></td>
<td>100,0</td>
</tr>
<tr>
<td>SEV 2</td>
<td>0,7</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>100,0</td>
</tr>
<tr>
<td>SEV 3</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>2,8</td>
</tr>
<tr>
<td></td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>100,0</td>
</tr>
<tr>
<td>SEV 4</td>
<td>1,7</td>
</tr>
<tr>
<td>SEV 5</td>
<td>0,2</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>20,0</td>
</tr>
<tr>
<td></td>
<td>100,0</td>
</tr>
<tr>
<td>SEV 6</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>22,0</td>
</tr>
<tr>
<td></td>
<td>100,0</td>
</tr>
<tr>
<td>SEV 7</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>100,0</td>
</tr>
<tr>
<td>SEV 8</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td>100,0</td>
</tr>
<tr>
<td>SEV 9</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>3,3</td>
</tr>
<tr>
<td></td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>100,0</td>
</tr>
<tr>
<td>SEV 10</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>15,0</td>
</tr>
<tr>
<td></td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabela I - Dados das SEVs da “Região A”

De acordo com os resultados da Tabela I, pode-se ver:

a) que nas SEVs 1 a 3, correspondentes às localizadas nas cabeceiras das voçorocas (fig. 1), o embasamento estaria a uma profundidade média de 11 m; b) nas SEVs 4 a 7, localizadas na margem direita da voçoroca 3 (fig.1), o embasamento estaria a uma profundidade média de 20 m; e c) nas SEVs 8 a 10, localizadas entre as voçorocas 3 e 13 (fig. 1), o embasamento estaria a uma profundidade média de 13 m.

O aumento na profundidade do embasamento para as últimas sete SEVs, onde poderia se localizar o lençol freático, é coerente com a localização delas em relação à vertente.

Nestes dados observou-se uma disparidade entre os valores medidos e os valores previstos pelo modelo para as maiores profundidades (ARANHA et al., 1996). Isso se deve à interferência do efeito de borda ocasionado pela proximidade das voçorocas, o que no entanto, não prejudica a análise já que a tendência geral das curvas não é modificada.

Discussão dos resultados da “Região B”

Nesta região foram realizadas cinco SEVs. As duas primeiras (perpendiculares uma à outra), foram localizadas próximas ao poço artesiano da prefeitura de Datas, cujo poço artesiano tem uma profundidade de 61 m e a vazão é de 11.000 l/hora (segundo informações dadas por funcionário da prefeitura). A interpretação dessas SEVs corroboraram a presença de um nível com menor resistividade entre 3 e 7 metros de profundidade, onde poderia encontrar-se um primeiro lençol freático, o que é atribuível à proximidade com o Ribeirão Datas. Por outro lado, observa-se que o Ribeirão Datas apresenta um assoreamento importante, o que pela sua vez favorece a recarga do lençol freático, além de permitir o armazenamento das mesmas.

A terceira SEV foi realizada à esquerda da estrada que vai da Cidade de Datas à BR 367. O local apresenta uma topografia mais elevada que a anterior e é constituída por quartzos intemperizados presentes nos arredores. Entre os 7 e 19 m, registrou-se uma camada de resistividade sensivelmente mais baixa, o que corresponderia ao manto de intemperismo e provável capacidade de armazenamento de águas, não necessariamente bom para exploração como aquífero.

As últimas duas SEVs realizadas nesta região, localizam-se à direita do trevo Datas - Gouveia, na direção desta última e também foram realizadas em sentido perpendicular uma à outra. De acordo com a resposta eletorrresitiva das sondagens feitas, foi possível determinar, entre os 5 a 13 metros de profundidade, o que corresponderia a um manto de intemperismo. Topograficamente, este local tem uma situação similar ao anterior, mas com relevo deprimido ao norte e sul do ponto escolhido para a realização das SEVs. A depressão do terreno que fica ao sul corresponde a um vale, onde existe um córrego, e a diferença de altitude entre o ponto onde foram realizadas as SEVs e o córrego está em torno de cinco a sete metros.

<table>
<thead>
<tr>
<th>Espessura (m)</th>
<th>Resistividade (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEV 1</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>2,8</td>
</tr>
</tbody>
</table>
Segundo os dados apresentados na Tabela 2, a resposta eletroresistiva apresenta uma melhor definição das camadas, não definindo necessariamente profundidades para o lençol freático.

Conclusões

De acordo com os dados obtidos podemos afirmar que a variação vertical da resistividade, na "Região B" é bem pronunciada indicando a possibilidade de contatos bem definidos entre a rocha sí e o manto de intemperismo. Isto indicando que as duas regiões, que são geomorfologicamente bem diferenciadas, apresentam também uma resposta geofísica diferenciada. Deve-se realçar que devido aos efeitos de borda, os resultados da resistividade da "Região A", tem seus resultados mascarados, não permitindo uma melhor definição dos seus horizontes mais profundos.

Finalmente foram atingidos os objetivos planteados neste trabalho.

Referências Bibliográficas

Fig. 1.- Localização das áreas de campo