INTRODUÇÃO AOS SISTEMAS DE INFORMAÇÃO GEOGRÁFICA

Jorge Luis Silva Brito
Roberto Rosa
Profs. do DEGEO - UFU

RESUMO: Os sistemas de informação fazem parte de um campo relativamente novo, cujos primeiros desenvolvimentos apareceram nos anos 50, dedicados especialmente à coleta de dados, armazenamento e análise dos dados, servindo de apoio à tomada de decisões. O sistema de informação geográfica (SIG) é um caso específico do sistema de informação sentido amplo. Seu desenvolvimento começou em meados da década dos 60, destinado à aquisição, armazenamento, manipulação, análise e apresentação de dados geográficos. Este trabalho procura dar uma visão geral do que é um SIG, seus componentes (hardware e sistema operacional, software de aplicação e aspectos institucionais), estrutura de dados (raster e vetorial), dados (fontes, aquisição, armazenamento, fontes de erros e qualidade), geração de produtos e, por fim, uma breve discussão referente à interface entre o sensoriamento remoto e os SIG's, assim como etapas a serem seguidas para escolha e implantação de um SIG.

Palavras Chaves: Sistema de Informação Geográfica, Geoprocessamento

ABSTRACT: The information systems is a field new which development first appeared 50' decade. An information system is the chain of operations that takes us from collection of data, to storage and analysis of the data, to the use in some decision-marking process. The geographic information system (GIS) is an information system that is design to work with data referenced by spatial or geographic coordinates, designate to capturing, storing, manipulating, analyzing and displaying of the geographic data. This paper supply to given a general vision of the GIS, our components (hardware and operation system, application software and institutionally aspect), data structures (vector and raster), data (fonts, acquisition, storage, errors fonts and quality), product generation and the last a discussion referent the interface between remote sensing and geographic information systems, including steps for selection and implantation of the GIS.

Key Words: Geographic information system, geoprocessing

1. INTRODUÇÃO

O uso de computadores para o manuseio de uma grande quantidade e variedade de dados tem levado ao desenvolvimento dos chamados "Sistemas de Informação", dedicados ao armazenamento e análise integrada de dados.

Os sistemas de informação fazem parte de um campo relativamente novo de estudo, cujos primeiros desenvolvimentos apareceram nos anos 50, dedicados especialmente a trabalhos administrativos. Na década dos 60 esses sistemas começaram a ser melhorados, servindo de apoio à tomada de decisões, transformando-se em um poderoso instrumento para os planejadores.

De modo geral, pode-se definir formalmente um sistema de informação como sendo uma combinação de recursos humanos (Peopleware) e técnicos (Hardware/Software), em concordância com uma série de procedimentos organizacionais que proporcionam informações com finalidade de apoiar as gestões diretrizes.

Dentro do desenvolvimento de novas ciências, os sistemas de informação estão alcançando um dos primeiros lugares na
moderna tecnologia em função da crescente necessidade de armazenar, processar e manipular grande volume de dados.

O Sistema de Informação Geográfica (SIG) é um caso específico do Sistema de Informação. Seu desenvolvimento começou em meados da década de 60. O primeiro sistema a reunir as características de um SIG foi implementado no Canadá, em 1964, sendo chamado de “Canadian Geographic Information System”. Em seguida foram desenvolvidos outros sistemas. Dentre eles podemos destacar os sistemas de New York Landuse and Natural Resources Information Systems (1967) e Minnesota Land Management Information System (1969). Nas décadas posteriores ocorreram consideráveis avanços em equipamentos e software, permitindo o desenvolvimento de sistemas mais potentes e novas aplicações, popularizando principalmente os CAD’s (Computer Aided Design), cujos objetivos são diferentes dos SIG’s.

Um SIG pode ser definido como um sistema destinado à aquisição, armazenamento, manipulação, análise e apresentação de dados referidos espacialmente na superfície terrestre. Portanto, o sistema de informação geográfica é uma particularidade do sistema de informação sentido amplo. Esta tecnologia automatiza tarefas até então realizadas manualmente e facilita a realização de análises complexas, através da integração de dados de diversas fontes.

O manejo de dados espaciais requer instrumentos especializados e complexos para obter, armazenar, recuperar e apresentar as informações. Além do mais, dados oriundos de distintas fontes fazem com que exista a necessidade de integrá-los, para o efetivo uso dos mesmos, assim como para se obter novas informações.

O objetivo geral de um sistema de informação geográfica é, portanto, servir de instrumento eficiente para todas as áreas do conhecimento que fazem uso de mapas, possibilitando: integrar em uma única base de dados informações representando vários aspectos do estudo de uma região; permitir a entrada de dados de diversas formas; combinar dados de diferentes fontes, gerando novos tipos de informações; gerar relatórios e documentos gráficos de diversos tipos etc.

A diferença entre um SIG (Sistema de Informação Geográfica) e um CAD (Desenho Auxiliado por Computador) consiste basicamente no fato de que o último é um instrumento de desenho digital e não um sistema de processamento de informação espacial.

Um CAD possui funções que permitem a representação precisa de linhas e formas, podendo ser utilizado na digitalização de mapas e cartas. No entanto, apresenta restrições no que diz respeito à atribuição de transformação de outras informações às entidades espaciais. Apesar disso os CAD’s podem ser utilizados em conjunto com os SIG’s.

1.1. Conceitos Básicos

Para se entender o que é um sistema de informação geográfica é necessário conhecer-se a definição de alguns conceitos básicos que são normalmente empregados pela comunidade que lida com esta tecnologia, segundo Teixeira et alii, 1992.

Como sistema considera-se um arranjo de entidades (elementos) relacionadas ou conectadas, de tal forma que constituem uma unidade ou um todo organizado, com características próprias e subordinadas a processos de transformação conhecidos. As entidades são os elementos ou objetos tomados como unidades básicas para a coleta dos dados. Os dados relacionam-se com os atributos, que caracterizam e fornecem significado à unidade estudada. Por exemplo, pode-se tomar um lugar como entidade, e as suas características de solo, relevo e uso da terra como alguns de seus atributos. O conjunto de entidades (lugares) corresponde à área estudada. Os dados disponíveis sobre os atributos representam a riqueza informativa.

O número de atributos mensurados fornece a base para melhor caracterização da área através do cruzamento das informações. Como o sistema básico inclui fases de entrada de dados, transformação e saída de informação, pode-se prever a inclusão de novas entidades, aumentando a grandezda da área estudada, bem como a inclusão de dados sobre novos atributos, que vão sendo considerados importantes. Esse processo representa a realimentação do SIG.

Deve-se ainda definir os termos dado e informação. Um dado é um símbolo utilizado para
a representação de fatos, conceitos ou instruções em forma convencional ou preestabelecida e apropriada para a comunicação, interpretação ou processamento por meios humanos ou automáticos, mas que não tem significado próprio. Já informação é definida como o significado que o ser humano atribui aos dados, utilizando-se de processos preestabelecidos para sua interpretação. Pode-se dizer que os dados são um conjunto de valores, numéricos ou não, sem significado próprio, e que informação é o conjunto de dados que possuem significado para determinado uso ou aplicação (Teixeira et alii, 1992).

Como informação geográfica considera-se o conjunto de dados cujo significado contém associações ou relações de natureza espacial, dados esses que podem ser apresentados em forma gráfica (pontos, linhas e áreas/polígonos), numérica e alfanumérica. Assim, um sistema de informação geográfica utiliza uma base de dados computadorizada que contém informação espacial sobre a qual atua uma série de operadores espaciais (Teixeira et alii, 1992).

Os SIG's incluem-se no ambiente tecnológico que se convencionou chamar de geoprocessamento, cuja área de atuação envolve a coleta e tratamento da informação espacial, assim como o desenvolvimento de novos sistemas e aplicações. A tecnologia ligada ao geoprocessamento envolve hardware (equipamentos) e software (programas) com diversos níveis de sofisticação, destinados à implementação de sistemas com fins didáticos, de pesquisa acadêmica ou aplicações profissionais e científicas nos mais diversos ramos das geociências (Teixeira et alii, 1992).

1.2. Formas de Representação de Entidades Espaciais

Um Sistema de Informação Geográfico (SIG), como já definido anteriormente, é um sistema destinado à entrada, armazenamento, manipulação, análise e visualização de dados geográficos ou espaciais (gráficos e/ou imagens). Estes dados são representados por pontos, linhas e polígonos aos quais são associados atributos, isto é, características das feições que os pontos, linhas e polígonos representam (Figuras 1 e 2). Por exemplo, o ponto pode representar locais com risco de desertificação. A linha pode representar estradas, rios ou outras feições lineares; já o polígono pode representar feições areais tais como tipos de vegetação, uso da terra, etc.

Pontos: Os elementos pontuais abrangem todas as entidades geográficas que podem ser perfeitamente posicionadas por um único par de coordenadas x, y. Sua localização no espaço é feita considerando uma superfície plana (Figura 1a).

Linhas: Os elementos lineares são na

![Fig. 1 - Formas de representação das entidades espaciais.](image-url)
### Fig. 2 - Representação das feições topológicas por pontos, linhas e polígonos.

verdade um conjunto de pelo menos dois pontos. Além das coordenadas dos pontos que compõem a linha, deve-se armazenar informações que indiquem de que tipo de linha se está tratando, ou seja, que atributo está a ela associado (Figura 1b).

Áreas ou Polígonos: Os elementos areais ou poligonais têm por objetivo descrever as propriedades topológicas de áreas como por exemplo a forma, vizinhança, hierarquia etc., de tal forma que os atributos associados aos elementos areais possam ser manipulados da mesma forma em que um mapa temático analógico. Na representação por polígonos, cada elemento tem área, perímetro e formato individualizado (Figura 1c).

Os elementos espaciais (gráficos) pontos, linhas e áreas podem ser definidos sobre um sistema qualquer de coordenadas. A dimensão (z) refere-se ao valor do atributo estudado para um determinado elemento (lugar). Pode ser representada na forma alfanumérica simbólica, o que significa que os dados a serem representados devem estar em escala nominal (classes). Para tanto, valores numéricos (quantidades) referentes a um determinado atributo devem necessariamente passar por um processo de transformação, da escala de razão para uma escala nominal, antes de serem inseridos na base de dados de um SIG. Já a dimensão tempo refere-se à variação temática em épocas distintas. Nesse caso, novos níveis de informação (temas) vão sendo agregados à base de dados (Teixeira et alii, 1992).

1.3. Componentes de um SIG

Um sistema de informação geográfica tem três importantes componentes: hardware e sistema operacional, software de aplicação (SIG) e aspectos institucionais do SIG. Esses três componentes necessitam ser balanceados para o funcionamento satisfatório do sistema.

1.3.1. Hardware e Sistema Operacional

De maneira geral, os componentes de hardware de um sistema de informação geográfica são apresentados na Figura 3. O computador propriamente dito ou unidade central de processamento (CPU) é ligado a uma unidade de armazenamento ou "disk drive", que providencia espaço para armazenamento dos programas e dados. A mesa digitalizadora, o scanner ou outro dispositivo de entrada são usados para converter dados da forma analógica (mapas, cartas, etc.) para o formato digital e enviá-los para o computador. Uma unidade de visualização de imagens (UVI) e plotter ou outro dispositivo de saída são usados para mostrar o resultado dos processamentos efetuados nos dados, e uma unidade de leitura de fita é usada para armazenamento dos dados e/ou programas em fitas magnéticas, ou para comunicação com outros sistemas. Comunicação entre computadores também pode ser feita utilizando-se sistemas de rede ou via linhas telefônicas, utilizando-se de um "modem".

![Diagrama de Componentes de Hardware de um SIG](image-url)

Fig. 3 - Componentes de Hardware de um SIG.
Em geral, os dispositivos de saída (plotters, impressoras de impacto, laser, de jato de tinta, térmicas, etc.) e os dispositivos de entrada (mesas digitalizadoras, scanners, etc.) são considerados periféricos de um computador.

Um bom SIG trabalha com o sistema operacional UNIX e em estações de trabalho (WorkStation). Estações de trabalho são computadores dedicados, especialmente projetados para o desenvolvimento de tarefas que envolvam principalmente o processamento gráfico. Além de suas dimensões reduzidas, caracterizam-se pelo seu grande poder de processamento e armazenamento de dados. Apresentam portas para conexão com unidades de fita magnética, mesas digitalizadoras, scanners, plotters, impressoras etc.

Os principais fabricantes de estações de trabalho são: SUN Microsystems, Masscomp, Apple Mac II, AT & T, Silicon Graphics Iris, Intergraph Interpro, IBM, DEC e Tektronix.

Uma configuração típica de uma estação de trabalho é:

- CPU com 16 Mb de memória RAM
- Monitor colorido de 16" com resolução de 1152 x 900 pixels, 256 cores simultâneas e PAR (Aspect Ratio) de 1:1
- Unidade de disco rígido de pelo menos 400 Mb
- Unidade de disco flexível de 3 1/2" e 1,44 Mb
- Unidade de fita magnética de 1/4" e 150 Mb
- Teclado, mouse ótico e pelo menos duas saídas seriais
- Sistema operacional UNIX

Atualmente, em função do crescente avanço na tecnologia dos microcomputadores (386/486), podemos encontrar alguns SIG's, de menor porte, que rodam neste tipo de equipamento, alguns utilizando o sistema operacional MS-DOS típico destes equipamentos, outros utilizando o sistema operacional UNIX.

Uma configuração típica de um Microcomputador para utilizar um SIG é:

- Microcomputador compatível com IBM PC/AT 386 ou 486
- Memória RAM de 4 Mb
- Monitor colorido SVGA
- Disco rígido de 200 Mb
- Unidades de disco flexível de 5 1/4" (1,2 Mb) e 3 1/2" (1,44 Mb)
- Teclado, Mouse
- Sistema operacional MS-DOS ou UNIX

Como dispositivo de entrada de dados, normalmente, um SIG utiliza mesa digitalizadora e, como dispositivos de saída, impressoras e/ou plotters.

1.3.2. Software de Aplicação (SIG)

Um sistema de informação geográfica é composto de forma simplificada por cinco componentes (subsistemas): de entrada de dados, de armazenamento de dados, de gerenciamento de dados, de análise e manipulação de dados e de saída e apresentação dos dados (relatórios, gráficos, mapas, etc.).

Subsistema de Entrada de Dados (Aquisição) - está relacionado com a conversão de informações analógicas em digitais, tarefa que consome muito tempo e de custo elevado. Informações estas provenientes de diversas fontes, como por exemplo fotografias aéreas, imagens de satélite, folhas topográficas, mapas, relatórios estatísticos e outras fontes de informação. Essas informações são inseridas no computador por meio do teclado, mesas digitalizadoras, scanners, fitas magnéticas, etc.

Subsistema de Armazenamento de Dados - está relacionado com os dispositivos de hardware destinados a guardar (armazenar) as informações inseridas na fase anterior. Estes dispositivos podem ser: discos rígidos, discos flexíveis, fitas magnéticas, etc.

Subsistema de Gerenciamento de Dados (Banco de Dados) - consiste na inserção, remoção e/ou modificação/atualização nos dados, efetuados através de um sistema de gerenciamento de banco de dados. Um banco de dados geográficos armazena e recupera dados geográficos em suas diferentes geometrias, bem como as informações descritivas. Tradicionalmente os SIG's armazenavam os dados geográficos e seus atributos em arquivos internos. Esse tipo de solução vem sendo substituído pelo Sistema de Gerenciamento de Banco de Dados (SGBD), para satisfazer à demanda do tratamento eficiente de dados espaciais e não-espaciais (tabelas) cada vez
maiores. O uso do SGBD permite com maior facilidade a interligação de banco de dados já existentes com o SIG.

**Subsistema de Análise e Manipulação de Dados** - consiste em examinar os dados que tenham determinadas informações de interesse, a fim de gerar novas informações. Podem ser desenvolvidas tarefas de seleção e/ou agregação de informações temáticas e/ou estatísticas. Os principais SIG's possibilitam realizar operações de: reclassificação, cruzamento, ponderação, cálculo de distâncias e áreas, geração de isolinhas, consulta a uma base de dados etc.

**Subsistema de Saída e Apresentação dos Dados** - refere-se à apresentação dos resultados gerados na fase de aquisição e/ou análise e manipulação. Esses resultados podem ser tabelas, relatórios, gráficos, documentos cartográficos, fotografias/imagens etc., e podem ser exibidos através de monitores de vídeo, impressoras, plotters etc.

1.3.3. Aspectos Institucionais de um SIG

Os cinco subsistemas de um SIG indicam o caminho com que a informação geográfica será processada, mas não garantem que um determinado SIG será usado efetivamente. Para usarmos efetivamente um SIG necessitamos de um lugar apropriado no contexto institucional e de pessoas qualificadas (Peopleware) para o manuseio do sistema. São necessários grandes investimentos não só na aquisição do hardware e software, mas também em treinamento de pessoal.

Os custos de treinamento e aprendizagem são muitas vezes subestimados ao se planejar a implantação de um SIG em uma instituição. Os SIG's são sistemas complexos, com muitos conceitos de lento aprendizado. Estima-se que o tempo para adquirir eficiência na operação de um SIG seja de seis meses a dois anos de dedicação integral (Câmara, 1993).

O sistema operacional UNIX é complexo e ainda pouco conhecido em nosso meio, não sendo fácil encontrar, no Brasil, especialistas no assunto. O ambiente PC é bastante difundido. Sua simplicidade faz com que muitos optem por este ambiente, embora os SIG's para esse ambiente, na maioria das vezes, possuam funções limitadas e, em geral, de caráter mais didático.

2. **ESTRUTURA DE DADOS**

2.1. Os Dados Geográficos no Computador

Ainda que existam várias maneiras de representar os dados espaciais, quase todas as variações produzidas são sobre dois tipos básicos de representação. Uma é a estrutura conhecida como raster e a outra vetorial. A principal diferença entre estes dois tipos de estruturas está no modelo de espaço que cada uma pressupõe. As estruturas vetoriais se baseiam em um espaço contínuo que se comporta segundo postulados da geometria euclidiana enquanto que as estruturas raster dividem o espaço geográfico em elementos discretos, requerendo a adoção de uma geometria própria que poderíamos chamar de geometria digital (Figura 4).

![Fig. 4 - Tipos de estruturas de dados no computador.](image-url)
2.2. Estrutura de Dados Raster

Trata-se do primeiro e mais antigo dos formatos de dados – formato raster ou estrutura grid (grelha). Essa estrutura se consegue mediante o uso de uma malha quadrículada regular sobre a qual se constrói célula a célula o elemento que está sendo representado. Cada célula corresponde a um elemento ao qual é atribuído um código, de tal forma que o computador sabe a que elemento pertence determinada célula.

Na representação raster cada célula é individualmente integrada ao sistema por suas coordenadas. Torna-se fácil entender, se imaginarmos o espaço assim representado como uma matriz \( p(i, j) \), composta de \( i \) linhas e \( j \) colunas, onde cada célula tem um número de linha, um número de coluna e um valor correspondente ao atributo estudado. Um ponto é representado por uma única célula. Uma linha é um conjunto de células vizinhas arranjadas numa determinada direção e, uma área é um aglomerado de células (Figura 4a).

A superfície bi-dimensional sobre a qual os dados estão sendo representados não é uma superfície contínua, mas sim discreta. Esse aspecto interfere na avaliação de áreas e distâncias, principalmente quando o tamanho da célula é grande em relação ao tamanho do fenômeno representado.

A estrutura raster assume que o espaço pode ser tratado como uma superfície cartesiana plana, onde cada célula está associada a uma porção do terreno. A resolução do sistema é dada pela relação entre o tamanho da célula no mapa e a área por ela coberta no terreno. Dados raster são armazenados numa grade, que é referenciada a um sistema de coordenadas (exemplo, latitude e longitude). O tamanho da grade pode variar, contudo a resolução espacial dos dados é determinada pela dimensão da grade.

Pelo fato da estrutura raster usar um plano bi-dimensional, apenas um atributo pode ser representado por vez. Assim, para a representação do mundo real, um conjunto de planos superpostos deve ser usado (Figura 5).

Fig. 5 - Espaço Tridimensional para Representação do Mundo Real
Dados raster são facilmente manipuláveis computacionalmente. No entanto, requerem grande quantidade de espaço (em disco ou fita magnética) para o seu armazenamento. Dados digitais de sensoriamento remoto (imagens de satélite) são um bom exemplo de dados no formato raster ou grid.

2.3. Estrutura de Dados Vetoriais

Os dados geográficos também podem ser representados pelo formato vetorial ou polígono. Neste caso, é usada uma série de pontos (coordenadas x, y) para definir o limite do objeto ou feição de interesse. É uma tentativa de reproduzir um elemento o mais exatamente possível. Assume-se o espaço como contínuo, o que permite que todas as posições, distâncias e áreas sejam definidas com um grau de precisão muito maior (Figura 4b).

Os métodos vetoriais assumem que as coordenadas dos pontos são matematicamente exatas. Além disto, usam relações implícitas, permitindo que dados complexes sejam armazenados em menos espaço no computador. No entanto alguns cálculos são dificultados e consomem um maior tempo para sua resolução.

3.4. Comparação entre as Estruturas de Dados

A estrutura de armazenamento de dados pode ou não incorporar informações topológicas, descrevendo não somente a posição de um objeto, mas também as relações espaciais entre o objeto e os objetos vizinhos. Informações topológicas são importantes em muitos tipos de análises, incluindo detecção automática de erros, janelamento para análises, apresentação gráfica, aplicações em rede, operações de proximidade, sobreposição de polígonos e outros procedimentos de inserção. No entanto, se sua aplicação não necessita de informações detalhadas sobre as relações entre os objetos espaciais, a criação de uma topologia para tal fim pode dificultar a criação e atualização da base de dados. Por exemplo, uma estrutura vetorial pode ser perfeitamente adequada para tarefas de visualização dos dados.

A tradicional vantagem e desvantagem da estrutura de dados raster versus estrutura de dados vetorial foi bastante documentada por diversos autores. Basicamente isto inclui volume de dados (ou eficiência de armazenamento), eficiência de recuperação, robustez para perturbação, eficiência na manipulação dos dados (ou processamento), acurácia e precisão dos dados e visualização dos dados. Algumas dessas diferenças, no entanto, são menos importantes nas implementações modernas de SIG.

A principal vantagem das estruturas raster está em sua simplicidade, não exigindo programas muito complexos para a manipulação dos dados, facilitando a elaboração de aplicações específicas. O problema no uso desta estrutura refere-se à precisão dos mapas digitais obtidos, uma vez que esta depende diretamente da resolução da quadrícula, acarretando sérias dificuldades na representação de manchas pequenas ou padrões lineares como rios e estradas. A solução nestes casos é o refinamento da malha, porém exige meios de armazenamento mais potentes.

Outra limitação da estrutura raster, quando comparada com a vetorial, refere-se à qualidade visual de apresentação dos produtos finais (mapas), produzidos em impressoras e/ou plotters, assim como a precisão obtida. A estrutura vetorial permite uma apresentação mais adequada dos dados, não só do ponto de vista estético mas também pelo fato de que o produto final assemelha-se muito mais à forma analógica (convencional) de elaboração de mapas.

Os modernos SIG's possibilitem acessar, armazenar, manusear, recuperar e visualizar dados de ambas as estruturas (raster e vetorial), assim como a possibilidade de converter dados de uma estrutura para outra. Normalmente, para o processo de entrada de dados (via mesa digitalizadora) utiliza-se a estrutura vetorial, e para o processo de análise e cruzamento de mapas (temas), a estrutura raster.

3. AQUISIÇÃO DE DADOS

3.1. Fontes de Dados

Os dados utilizados em um SIG podem ser originários de diversas fontes, que podem ser classificadas genericamente em primárias (levantamentos direto no campo ou produtos obtidos por sensores remotos) e em secundárias (mapas e estatísticas), que são derivadas das fontes primárias.
No Brasil as principais fontes de dados espaciais (na forma de cópias em papel) são as folhas topográficas em diferentes escalas editadas pela Fundação Instituto Brasileiro de Geografia e Estatística (FIBGE) e pela Diretoria do Serviço Geográfico do Exército (DSG). Tais documentos fornecem informações planialtímétricas de quase todo o território brasileiro, em diferentes escalas.

Outra excelente fonte de informação são os produtos obtidos pelos sensores remotos, especialmente as imagens (digitais e/ou em papel) obtidas pelos satélites da série Landsat e Spot, adquiridas e comercializadas pelo Instituto Nacional de Pesquisas Espaciais (INPE), assim como fotografias aéreas panchromáticas e coloridas obtidas por diversas empresas de aerolevantamento existentes no País e também nas mais variadas escalas.

Uma vez que todos os dados necessários foram coletados, os mesmos devem ser registrados em uma base cartográfica comum. Essa etapa pode ser cara, consumir uma enorme quantidade de tempo e ser frustrante. Porém, técnicas de análise, tais como sobreposição, modelagem e análise de redes não podem ser iniciadas antes desse processo ter sido completado. O conhecimento de como cada mapa é criado é de fundamental importância para o sucesso econômico do SIG. Antes de um novo dado ser coletado, exaustivas pesquisas deverão ser feitas de forma a verificar se não existem dados que o substituam.

Os dados espaciais são a essência de qualquer SIG. 80 a 90 por cento do dinheiro e esforço requerido para um SIG funcionar é usado para aquisição, entrada, atualização e manipulação de dados. Portanto é imprescindível que o usuário do SIG tenha um bom entendimento de todos os aspectos relacionados com a aquisição e manipulação dos dados, antes de aprender a usar o sistema. Um importante aspecto em dados espaciais é o registro da superfície. Falhas no registro da base de dados espaciais podem causar sérios problemas nos estágios de análise e avaliação desses dados. Portanto, é de fundamental importância entender bem esse processo. Disciplinas como a Geografia e ciências da terra têm geralmente dedicado menos atenção à localização precisa no registro da superfície. Por exemplo, no caso do registro de uma base de dados cadastral para diversos usos (multifinalitário), problemas de localização precisa de feições da superfície podem representar sérios inconvenientes durante a análise nos últimos estágios do projeto.

3.2. Entrada de Dados

Existem cinco maneiras de entrada de dados, que são: teclado, mouse, digitalização em mesa, digitalização ótica (rasterização via scanner) e leitura de dados na forma digital. A eficiência de cada forma de entrada de dados varia em função das diferentes aplicações e, conforme o tempo gasto, custo, precisão e disponibilidade de equipamentos e softwares.

Teclado - todas as maneiras de entrada de dados usam de alguma forma o teclado, porém, é mais usado para a entrada de dados pontuais e/ou símbolos. É usado também na fase de manutenção do desenho (atualização, correção ou inserção de novos dados).

Mouse - é usado para acionar comandos ou mesmo digitalizar dados. Na elaboração de plantas, quando os ângulos são conhecidos, podemos usar o mouse em substituição à mesa digitalizadora.

Digitalização em mesa - é ainda a maneira mais utilizada para entrada de dados a partir de mapas, porém é um processo custoso e demorado. A mesa digitalizadora é um instrumento que permite a transferência eletrônica (manual) de coordenadas x, y de um mapa para dentro do computador.

Digitalização ótica - é realizada por meio de instrumentos de varredura (scanners). É a forma mais fácil de digitalizar. O produto apresenta baixo custo e otimização do tempo na passagem de dados para o computador, mas sofre restrições quanto à edição de informações. Vem sendo utilizada de forma cada vez mais intensa, principalmente a partir da queda de custo dos instrumentos de leitura. A tecnologia mais usual é baseada em câmaras CCD (Charge Coupled Device) e ainda apresenta problemas pela necessidade de usar dispositivos de alta qualidade (com pelo menos 300 dpi) para obter resultados aceitáveis, e os muitos algoritmos de conversão de formato de varredura para vetor requerem intervenção humana parcial.
Leitura de dados na forma digital - estamos nos referindo à importação de dados de outros equipamentos e principalmente das imagens obtidas pelos sensores orbitais (TM/Landsat e SPOT) fornecidos em fitas magnéticas pelo Instituto Nacional de Pesquisas Espaciais (INPE), assim como o fornecimento em “breve”, na forma de fitas magnéticas, folhas topográficas editadas e digitalizadas pela Fundação Instituto Brasileiro de Geografia e Estatística (FIBGE) e pelo Centro de Cartografia Automatizada do Exército (CCAuEX).

O desenvolvimento da coleta automatizada de dados primários está correndo rapidamente. Por enquanto, uma grande quantidade de dados está sendo coletada de maneira tradicional, por métodos não automatizados, e deve ser convertida para a forma digital. Computadores trabalham com números, não com documentos escritos ou picários. Assim, a conversão de mapas existentes para a forma digital constitui um dos maiores desafios enfrentados pelos planejadores de SIG. Mesmo com auxílio de aparelhos modernos, tais como os digitalizadores óticos (scanners), a tarefa de conversão ainda é assustadora. O gasto de tempo, energia e dinheiro não garante, em si mesmo, que uma base de dados confiáveis seja criada. A qualidade dos dados transferidos também precisa ser considerada.

No SIG os dados espaciais são representados por pontos, linhas e polígonos, como já mencionado anteriormente. A relação espacial dos pontos, linhas e polígonos é chamada de topologia. Todas as feições da paisagem podem ser reduzidas para um destes três tipos de dados, usando-se um par de coordenadas x, y. A topologia desses dados pode ser introduzida e armazenada em um computador para análises futuras.

3.3. Armazenamento de Dados

Os dispositivos de armazenamento de dados no caso dos SIG’s devem possuir simultaneamente altas taxas de transferência e espaço suficiente para armazenar grandes volumes de dados.

Discos Flexíveis (Floppy Disk) - Esses dispositivos de armazenamento encontram-se no mercado, basicamente, em dois tamanhos/capacidade: 5 1/4 (360 Kb ou 1,2 Mb) e 3 1/2" (720 Kb ou 1,44 Mb). Uma unidade de disco flexível é utilizada para gravar ou ler informações nos discos. A vantagem dos discos flexíveis é seu baixo custo. No entanto, têm baixa capacidade de armazenamento e taxa de transferência de dados, não sendo portanto recomendados para uso em SIG’s.

Discos Rígidos (Hard Disk) - São em geral da tecnologia de disco “Winchester”, sendo fixos na unidade de disco, de modo que não podem ser trocados. Estes discos têm grande capacidade de armazenamento e alta taxa de transferência de dados. O tempo de acesso do computador ao disco rígido é menor do que nos discos flexíveis. Possuem capacidade de armazenamento que varia desde 30 ou 40 Mb até 4 ou 5 Gb (mais comuns). Trata-se do dispositivo de armazenamento mais recomendado para uso em SIG’s.

Unidades de Fita Magnética (Rolo e Cartucho/Streamer) - As fitas magnéticas são de extrema utilidade em SIG’s. Esses dispositivos apenas há pouco tempo passaram a estar disponíveis para conexão direta a microcomputadores e estações de trabalho. Sua aplicação principal reside no fato de podermos utilizar as fitas compatíveis com o computador (CCT - Computer Compatible Tapes) como entrada direta no sistema. Antes desses dispositivos estarem disponíveis, era necessário que se conectasse o microcomputador - estação de trabalho - a um computador de maior porte e, após este último ter efetuado a leitura da fita, realizar a transferência do arquivo de interesse para o microcomputador. Isto fazia com que a estação de trabalho em SIG’s mantivesse uma grande dependência de um computador de maior porte.

As fitas de cartucho ou streamer até há pouco tempo tinham como única finalidade servir de mídia para gravação dos backup dos arquivos existentes no disco rígido, uma vez que esse tipo de fita não permite a restauração dos arquivos diretamente da fita para a CPU (Unidade Central de Processamento). Isto significa que só poderá ser gravado nela o que já foi gravado previamente em disco.

O INPE (Instituto Nacional de Pesquisas Espaciais) tem colocado à disposição dos usuários fitas streamer contendo imagens obtidas por
satélites de observação da Terra. Entre eles, os da série LANDSAT e SPOT. Isto coloca esse tipo de fita como um meio intermediário no processo de entrada de imagens nos SIG’s.

4. FONTES DE ERROS E QUALIDADE DOS DADOS

Para o efetivo uso de qualquer SIG é importante que o usuário conheça os erros associados com a informação espacial. Estes podem ser divididos em três grupos: erros comuns, erros resultantes de variações naturais ou de medidas originais e erros de processamento (Burrough, 1987).

4.1. Erros Comuns

São erros mais diretamente associados ao controle do usuário e mais fáceis de serem checados. Os erros mais comuns estão relacionados a: idade dos dados, cobertura areal (parcial ou total), escala do mapa/carta, densidade de observação, relevância, formato, acessibilidade e custo.

Idade dos Dados - São raras as vezes em que todos os dados são coletados ao mesmo tempo, para uso em um determinado projeto. Muitos planejadores e agências ambientais são forçados a usar dados publicados na forma de mapas e/ou relatórios, os quais não necessariamente são os mais recentes. Como exemplo podemos citar os produtos obtidos por sensores remotos (fotografias aéreas e imagens de satélite), os quais estão quase sempre desatualizados quando chegam à mão do usuário.

Cobertura Areal - É desejável que, quando se estuda uma determinada área (bacia hidrográfica, distrito, município, estado, país, etc.), se tenha uma cobertura de informações uniforme. Freqüentemente isto não acontece. Em muitas regiões, para cobrir toda a área a ser estudada, o pesquisador tem que recorrer a dados obtidos em diferentes datas e até mesmo em escalas diferentes.

Escala do Mapa/Carta - Muitos dados geográficos têm sido gerados e armazenados na forma de mapas temáticos e somente nos últimos anos o desenvolvimento dos sistemas de informação digital tornou possível colocar à disposição dos usuários as observações de campo originais para futuros processamentos (principalmente nos países mais desenvolvidos). Mapas de grande escala não somente mostram mais detalhes topológicos (resolução espacial), como normalmente possuem a legenda mais detalhada. Por exemplo, um mapa de solos na escala de 1:25.000 apresenta mais detalhes (tanto topológicos quanto de legenda) do que um na escala de 1:250.000.

Densidade de Observações - A densidade de observações na elaboração de um mapa pode fornecer o grau de confiabilidade dos dados. Resultados de pesquisa demonstram que se aumentam a confiabilidade e a precisão dos dados utilizando-se técnicas geostatísticas para se estimar o número de amostras, por área, necessárias para a elaboração do mapa em função da escala desejada.

Relevância - Nem todos os dados usados para o processamento da informação geográfica desejada são diretamente relevantes para o propósito com que eles são usados. No entanto, eles foram usados porque os dados desejados não existem ou porque a coleta dos mesmos é muito cara.

Formato - Três aspectos no formato dos dados são importantes. O primeiro está relacionado com os aspectos técnicos de como os dados serão gravados (fitas magnéticas, disquetes, CD-ROOM, etc.) para serem transferidos para o computador. Isto inclui considerações como: tamanho dos blocos, número de chapas, bits por polegada, tipo de caracteres usados, tamanho dos registros, etc. O segundo aspecto está relacionado à forma com que os dados estão armazenados ou, em outras palavras, à estrutura dos dados. Por exemplo, se os dados estão na estrutura raster e/ou vetorial. O terceiro aspecto está mais relacionado aos dados e refere-se à escala, projeção e classificação.

Acessibilidade - Nem todos os dados são igualmente acessíveis. Por exemplo, em função de problemas militares, dados sobre recursos do solo e subsolo, especialmente em escalas grandes, não são disponíveis em alguns países. Outros problemas de acessibilidade referem-se ao custo e ao formato dos dados.

Custo - A coleta e entrada de dados novos
ou a conversão e reformatação de dados antigos pode custar muito dinheiro. Custos de digitalização (entrada) assim como de impressão (saída), em equipamentos de alta qualidade, são extremamente altos.

4.2. Erros Resultantes de Variações Naturais ou de Medidas Originais

Esses erros estão relacionados com a variabilidade da informação espacial e a correspondente acurácia com que foi adquirida. Esse tipo de erro normalmente é detectado quando se estiver trabalhando intimamente com os dados. Esses erros podem ser de: acurácia posicional, acurácia do conteúdo, fontes de variações nos dados.

Acurácia Posicional - A importância da acurácia posicional nos dados geográficos depende fundamentalmente do tipo de dado. As folhas topográficas são normalmente levantadas com alto grau de acurácia posicional, que é apropriada para uma boa definição de objetos tais como estradas, casas, limites de parcela de solo, e outras feições que são registradas. Com as modernas técnicas de levantamento eletrônico, a posição dos objetos na superfície da Terra pode agora ser registrada com acurácia de centímetros. Em contraste, a posição dos limites de vegetação, por exemplo, é variável, pois estes dependem muito do microclima e dos regimes hídricos. Erros posicionais podem também ser resultados do processo de digitalização.

Acurácia do Conteúdo - A acurácia do conteúdo do problema pode estar ligada aos atributos dos pontos, linhas e área na base de dados geográfica, a qual pode ou não estar correta. Nós podemos fazer uma distinção entre uma acurácia qualitativa, a qual se refere às variáveis nominais ou rótulos (por exemplo, a área em um mapa de uso do solo está codificada errada - onde era milho, temos soja) e a acurácia quantitativa, que se referem a um erro na estimação do valor assimilado (por exemplo, um erro na calibração de um planímetro pode estimar erroneamente o valor da área).

Fontes de Variações nos Dados - Variações podem ocorrer nos dados geográficos devido a vários fatores. Podemos ter diversos tipos de erros: erros resultantes de enganos na entrada de dados, erros de medida, erros na coleta dos dados no campo, erros de laboratório e erros devido a variações espaciais e qualidade do mapa.

- Erros resultante de enganos na entrada de dados - são os mais comuns, embora nas fontes originais estes possam estar corretos.
- Erros de medida - poucos dados podem resultar em dados sem confiança, sem exatidão ou observações tendenciais.
- Erros na coleta dos dados no campo - um bom procedimento de coleta dos dados no campo e uma padronização adequada dos mesmos ajudam a reduzir observações incorretas.
- Erros de laboratório - esse tipo de erro está associado principalmente à qualidade e precisão dos equipamentos usados, bem como dos procedimentos de análise empregados.
- Erros devido a variações espaciais e qualidade do mapa - muitos mapas temáticos, principalmente os que representam fenômenos ou feições naturais como solo ou vegetação, não mostram fontes de variações localizadas (específicas). Consideram as diversas categorias homogêneas, quando na maioria das vezes isto não acontece.

4.3. Erros de Processamento

Erros de processamento são aqueles inerentes às técnicas usadas para a entrada, acesso e manipulação da informação espacial. São erros mais difíceis de serem detectados, requerem um intimo conhecimento não só dos dados, mas também da estrutura de dados e dos algoritmos usados. Podem ser subdivididos em: erros numéricos no computador, falhas associadas com análises topológicas e problemas de classificação e generalização.

Erros Numéricos no Computador - Referem-se às limitações do computador na representação de números. A habilidade do computador em processar e armazenar as informações com o nível de precisão requerido ainda é um aspecto crítico na maioria dos computadores. A precisão tem importantes consequências no registro de números, operações aritméticas e armazenamento de dados e depende basicamente do computador que se está usando. Números pequenos e/ou com muitas casas decimais podem apresentar diferentes resultados em diferentes computadores. Além do mais, muitos sistemas usam o formato raster para processamento. Isto causa problemas de acurácia na estimativa de áreas, perímetros e distâncias.
Falhas Associadas com Análises Topológicas - Muitos procedimentos comumente usados no processamento da informação geográfica assumem implicitamente que: as fontes de dados são uniformes; os procedimentos de digitalização são inalavéis; sobreposição de mapas é meramente uma questão de interseção de limites e reconexão de linhas e/ou redes; os limites podem ser facilmente definidos e desenhados; qualquer algoritmo pode ser aplicado; e os intervalos de classe definidos por uma ou outra razão natural necessariamente são os melhores para todos os atributos mapeados. Essas ideias nem sempre são verdadeiras ou corretas. Isto tem apresentado grandes dificuldades técnicas para os projetistas do SIG, mas raramente estes problemas têm sido resolvidos.

Problemas de Classificação e Generalização - Muitas irregularidades na entrada de dados em um SIG são também atribuídas aos métodos usados para classificação e interpolação de dados, ou seja, aos procedimentos usados para transformar um dado pontual em areal.

5. GERAÇÃO DE PRODUTOS

Um SIG possui software para visualização de mapas, diagramas e informações tabulares, assim como uma série de outros tipos de saída. A escolha do tipo de apresentação depende do fenômeno que se está representando, bem como das possibilidades e limitações do software e hardware que se está utilizando.

5.1. Tipos de Produtos de Saída

Os produtos gráficos mais comuns produzidos por um SIG são mapas, diagramas e produtos numéricos, nas mais variadas formas. Alguns sistemas oferecem facilidade para criar apresentações de alta qualidade.

5.1.1. Mapas

Mapas Temáticos - concentram variações espaciais de um único fenômeno (ex. chuva) ou de relações entre fenômenos (ex. diferentes classes de cobertura do solo). Os mapas temáticos podem ser usados para caracterizar uma grande variedade de fenômenos.

Mapas Coropléticos - são tipicamente usados para representar fenômenos que apresentam uma magnitude relativa, as quais ocorrem dentro de um limite específico. Por exemplo, densidade de população de diferentes regiões brasileiras.

Mapas de Isolinhas - são usados para representar quantidades por linhas com igual valor. Por exemplo, linhas que apresentam valores com a mesma temperatura.

Mapas de Ponto - usados para representar a distribuição espacial de um fenômeno, normalmente usados para representar dados absolutos. O número de pontos deve refletir o número de ocorrências observadas. Na sua construção deve-se considerar: o valor do ponto, o tamanho e a localização dos pontos. Por exemplo, número de habitantes nos diferentes estados brasileiros.

Mapas de Símbolos Proporcionais - são usados para representar variáveis com valores absolutos, isto é, quantidades, dado que o tamanho do símbolo deve refletir o valor da variável. Podem-se usar: círculos, quadrados, triângulos, etc. Por exemplo, número de habitantes das diferentes cidades do Triângulo Mineiro.

Mapas de Fluxos - são usados para mostrar a direção e magnitude de fluxos. Por exemplo, a representação dos movimentos migratórios entre duas cidades.

Mapas Animados - são mapas que se prestam para mostrar a evolução de um determinado fenômeno geográfico. Por exemplo, mostrar a evolução da população das cidades através do tempo.

5.1.2. Diagramas

Muitos resultados de análises efetuados por SIG podem ser melhor representados por meio do uso de diagramas. Dentre os diagramas mais usados podemos destacar: de barras, de linhas, de setores e os histogramas.

5.1.3. Produtos Numéricos

Normalmente o usuário necessita, além da informação gráfica (visão generalizada), de informações numéricas (visão mais detalhada), as
quais são na maioria das vezes resultados de operações e/ou análises estatísticas efetuadas sobre os dados. Dentre esses produtos podemos destacar: cálculo de área e distância, média e variância, etc.

5.2. Componentes de Hardware para Apresentação dos Dados

Um SIG oferece diversas opções de apresentação dos dados, variando desde produtos na forma de papel e/ou fotografias, assim como produtos somente para a visualização temporária (no monitor de vídeo). A forma de apresentação dos dados deve ser estudada desde o início do processo, pois influenciará na escolha das cores, hachuras, tamanho dos símbolos, letras, etc., assim como no tipo de dispositivo de saída. Entre os dispositivos destinados à apresentação dos dados/mapas destacam-se: impressoras matriciais, impressoras a laser, impressoras e plotters a jato de tinta, plotters de pena e eletrostáticos, registradores em filme, etc. (Tabela 1). Porém, a escolha do melhor tipo de dispositivo de saída depende também da estrutura ou formato em que os dados se encontram (vetorial ou raster).

### Tabela 1

<table>
<thead>
<tr>
<th>Equipamento</th>
<th>Qualidade</th>
<th>Cores</th>
<th>Tamanho</th>
<th>Velocidade</th>
<th>Precisão</th>
<th>Suprimentos (Custo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impressoras Matriciais</td>
<td>Média</td>
<td>Sim</td>
<td>Até A3</td>
<td>Média</td>
<td>Média</td>
<td>Baixo</td>
</tr>
<tr>
<td>Impressora Laser</td>
<td>Boa</td>
<td>Sim</td>
<td>Até A4</td>
<td>Alta</td>
<td>Boa</td>
<td>Médio</td>
</tr>
<tr>
<td>Impressoras e Plotters a Jato de Tinta</td>
<td>Boa</td>
<td>Sim</td>
<td>Até A4</td>
<td>Alta</td>
<td>Boa</td>
<td>Alto</td>
</tr>
<tr>
<td>Plotters de Mesa</td>
<td>Boa</td>
<td>Sim</td>
<td>Maior A0</td>
<td>Lenta</td>
<td>Boa</td>
<td>Médio</td>
</tr>
<tr>
<td>Plotters de Rolo</td>
<td>Boa</td>
<td>Sim</td>
<td>Maior A0</td>
<td>Lenta</td>
<td>Média</td>
<td>Médio</td>
</tr>
<tr>
<td>Plotters Eletrostáticos</td>
<td>Boa</td>
<td>Sim</td>
<td>Maior 2A0</td>
<td>Alta</td>
<td>Boa</td>
<td>Alto</td>
</tr>
<tr>
<td>Registrador em Filme</td>
<td>Boa</td>
<td>Sim</td>
<td>Diversos</td>
<td>Alta</td>
<td>Média</td>
<td>Médio</td>
</tr>
</tbody>
</table>

**Impressoras Matriciais** - são os dispositivos mais usados, em função da simplicidade de operação e de seu custo relativamente baixo, tanto no que se refere a hardware como em termos de suprimento.

**Impressora a Laser** - são dispositivos que apresentam uma boa qualidade de impressão, porém apresentam desvantagens no que se refere ao tamanho máximo da apresentação.

**Impressoras e Plotters a Jato de Tinta** - operam por jateamento de tinta sobre a superfície de plotagem. O jateamento é feito por agulhas, num mecanismo semelhante a um cabeceiro de uma impressora matricial. Operam com quatro cores básicas: azul, vermelho, amarelo e preto. Outras cores podem ser produzidas pela combinação das cores básicas.
Plotter de Pena - este plotter move uma pena sobre o papel, desenhando vetores em posições aleatórias. Existem dois tipos básicos de plotters de pena: mesa e rolo.

Plotter Eletrostático - usam electricidade estática como princípio de operação. Uma carga negativa é aplicada sobre uma superfície dielétrica que reveste a mídia (papel ou filme), somente nas regiões que representam o desenho desejado. Essa mídia é então passada em um tonalizador, com tinta carregada positivamente, que é atraída pelas cargas negativas.

Registradores em Filmes - são destinados à obtenção de fotografias em papel (slide ou polaroid) diretamente do computador. Como exemplo deste dispositivo podemos citar o REMBRANDT.

Quando os dados estão no formato raster, os melhores dispositivos para apresentação são as impressoras e plotter a jato de tinta, a laser, o plotter eletrostático e os registradores em filmes. Quando os dados estão no formato vetorial, o plotter de pena é o dispositivo mais indicado.

6. SENSORIAMENTO REMOTO E SIG

Sensoriamento remoto e o sistema de informação geográfica são instrumentos poderosos para muitos tipos de pesquisa e áreas de aplicação. Existe hoje no mundo uma enorme quantidade de produtos cartográficos e informações temáticas, que são coletadas e/ou geradas por sensores remotos. Porém essa enorme quantidade de dados torna-se impossível de ser armazenada e analisada por métodos tradicionais. Daí a necessidade de se usar os sistemas de informação geográfica.

O SIG pode integrar os dados obtidos e/ou gerados por sensoriamento remoto com outros tipos de dados (de laboratório, trabalho de campo, mapas, etc.). O sensoriamento remoto tem a possibilidade de fornecer dados em diferentes escalas, dependendo do tipo de aplicação, e o SIG pode ligar essas informações a outros produtos. O uso destas duas tecnologias (SR e SIG) representa um valioso acréscimo de informações para muitos tipos de aplicação. O SR e o SIG são complementares. Por exemplo, podemos usar fotografias aéreas para extrair determinado tipo de informação, as quais são desenhadas em "overlays". Após os overlays estarem prontos podem ser digitalizados para dentro de um SIG, possibilitando a realização de diversos tipos de análise.

O SR e o SIG constituem-se em instrumentos poderosos para aquisição de dados, obtenção de medidas, mapeamentos, monitoramentos e modelagens da superfície terrestre.

7. ESCOLHA E IMPLANTAÇÃO DE UM SIG

A escolha e implantação de um SIG em qualquer instituição deve ser encarada como uma tarefa de médio a longo prazo. A simples aquisição do hardware e software não é suficiente para resolver todos os problemas e o sistema funcionar. A melhor maneira de implantar um SIG é seguir as seguintes etapas: identificação das necessidades do usuário, levantamento detalhado da instituição, detalhamento dos produtos necessários, escolha do sistema de geoprocessamento, execução de um projeto piloto e implantação do sistema propriamente dito.

Identificação das necessidades do usuário - trata-se da tarefa mais difícil na escolha e implantação de um SIG. Sem esta etapa estar claramente definida e entendida não se deve prosseguir adiante na implantação do sistema. O usuário deve identificar precisamente as aplicações que atendam ao seu universo de atuação.

Levantamento detalhado da instituição - deve-se levar em consideração o nível de informatização da instituição, equipamentos, softwares, base de dados existente e qualificação técnica do pessoal.

Detalhamento dos produtos necessários - deve-se especificar os produtos cartográficos a serem produzidos (precisão, qualidade, etc.) e necessidade ou não de ligação com banco de dados. Essa etapa é muito importante para a escolha do sistema de geoprocessamento e dos dispositivos de entrada e saída de dados.

Escolha do sistema de geoprocessamento - deve atender às necessidades do usuário, identificadas nas fases
anteriores. Um bom SIG tem que ser composto por programas de alto nível, genéricos ao máximo, e capazes de preencher as necessidades de cada projeto, mas mantendo sempre um bom desempenho. Tem que ser capaz de operar em ambiente multi-usuário e multi-tarefa, possibilitar a integração de dados oriundos de diversas fontes e nos dois formatos básicos, vetorial e raster, além de possibilitar a ligação com um sistema de gerenciamento de banco de dados (SGBD). Na aquisição de um SIG deve-se levar em conta também o custo do software, hardware e peopleware. Deve-se considerar os problemas de suporte técnico e verificar se o fornecedor tem condições de apoiar o uso operacional do sistema.

**Execução de um projeto piloto** - após a escolha do SIG, o mesmo deverá ser implantado em uma área piloto. Na experimentação, através da execução do projeto piloto é que comprovaremos a qualificação e a funcionalidade do sistema. Todos os usuários devem participar e opinar sobre seu funcionamento.

**Implantação do sistema propriamente dito** - nesta etapa é que o sistema encontra-se operacional, ou seja, está pronto para a execução de todos os serviços especificados na primeira fase e já redimensionados em função do projeto piloto.

**8. CONSIDERAÇÕES FINAIS**

Os recentes desenvolvimentos tecnológicos e os refinamentos nos SIGs (hardware e software), aliados às técnicas de aquisição de dados, têm revolucionado o manejo e o planejamento do solo. A ligação da informação espacial com a informação alfanumérica possibilitada pelo SIG facilita a tomada de decisões e permite a simulação dos efeitos do manejo e de políticas alternativas. O SIG é um instrumento poderoso, possibilitando ao usuário pesquisar, mostrar e analisar rapidamente modelos e informações espaciais. A atualização de mapas e de outros dados pode ser realizada mais rapidamente e com uma maior precisão através de um SIG do que por métodos convencionais.

A análise de mapas em um contexto completamente implementado de SIG tomará duas formas. Uma envolverá manipulação e apresentação de dados interativamente. Ao invés de contar apenas com um único mapa, como usualmente acontecia no passado por razões práticas, o usuário pode rapidamente criar uma série de mapas e apresentá-los sequencialmente ou lado a lado para obter resultados imediatos. O usuário poderá movimentar as apresentações no monitor como desejar, verificar de perto detalhes interessantes e explorar os efeitos de diferentes números e intervalos de classes etc.

A segunda forma que a análise cartográfica assumirá é aquela de uma interface gráfica entre o usuário do sistema e os registros numéricos. O mapa servirá como meio conveniente de direcionar questões aos arquivos de dados armazenados no computador. Ao ver uma apresentação cartográfica eletrônica, o usuário poderia perguntar (apontando com o mouse ou através do teclado) a área de um lago, a elevação de um aeroporto ou a distância rodoviária entre duas cidades. Nesta situação o mapa desempenha a função de visualização, ativa o processo de raciocínio e facilita indirettamente o processo de análise dos dados. A análise real, entretanto, é desempenhada pelo computador, que prossegue diretamente para os dados usados para elaborar o mapa, e não para o próprio mapa, em busca das respostas necessárias. Isso significa que os efeitos da abstração cartográfica não afetam os resultados analíticos, como ocorre quando procedimentos tradicionais de análise cartográfica são usados.

A utilização de SIG's possibilita a geração de banco de dados codificados espacialmente, promovendo ajustes e cruzamentos simultâneos de um grande número de informações, podendo também acompanhar a evolução espaço-temporal dos diferentes temas, obtendo novos mapas com rapidez e precisão, permitindo avaliar, diagnosticar e zonar áreas de forma rápida, adequada e eficiente, substituindo os métodos tradicionais geralmente mais morosos, onerosos e de alto grau de subjetividade.

Quanto mais complexa a análise numérica, maior a necessidade de visualizar o que está sendo feito e em que os resultados implicam. A computação gráfica serve para esses propósitos e representa o segmento que cresce mais rapidamente na indústria da computação.
REFERÊNCIAS BIBLIOGRÁFICAS


