Integração entre Estratégias Multiclasses e diferentes Funções Kernel em Máquinas de Vetores Suporte para Classificação de Imagens de Sensoriamento Remoto

  • Luccas Zambon Maselli Universidade Estadual “Júlio de Mesquita Filho” - UNESP. Instituto de Ciência e Tecnologia - ICT. Departamento de Engenharia Ambiental
  • Rogério Galante Negri UNESP Instituto de Ciência e Tecnologia - ICT Departamento de Engenharia Ambiental
Palavras-chave: Estratégias multiclasse, Funções Kernel, Máquinas de Vetores Suporte, Classificação de Imagens

Resumo

Dentre diferentes métodos de classificação de imagens, Máquina de Vetores Suporte (Support Vector Machine – SVM) tem sido amplamente utilizado em diferentes aplicações em Sensoriamento Remoto. Além de sua excelente formulação matemática, a possibilidade de emprego de diferentes funções kernel e estratégias multiclasses tornam o método SVM ainda mais atrativo. Enquanto as funções kernel possibilitam aumentar a capacidade de distinção entre dados não linearmente separáveis, as estratégias multiclasses estendem a formulação original do método SVM a fim de lidar com problemas de classificação envolvendo além de duas classes. A escolha envolvendo uma função kernel e uma estratégia multiclasses em particular implica diretamente sobre a acurácia da classificação. Este trabalho propõe duas arquiteturas para treinamento do método SVM com finalidade de diminuir o grau de liberdade que surge diante das diferentes combinações possíveis entre função kernel e estratégia multiclasses. Três estudos de caso, envolvendo classificação de uso e cobertura do solo a partir de imagens adquiridas por diferentes sensores, são realizados a fim de verificar o potencial das arquiteturas formalizadas em comparação as abordagens usuais.

Downloads

Não há dados estatísticos.
Publicado
2019-03-29
Como Citar
MASELLI, L. Z.; NEGRI, R. G. Integração entre Estratégias Multiclasses e diferentes Funções Kernel em Máquinas de Vetores Suporte para Classificação de Imagens de Sensoriamento Remoto. Revista Brasileira de Cartografia, v. 71, n. 1, p. 149-175, 29 mar. 2019.
Seção
Artigos Originais