Segmentation of Optical Remote Sensing Images for Detecting Homogeneous Regions in Space and Time

  • Wanderson Santos Costa Instituto Nacional de Pesquisas Espaciais
  • Leila Maria Garcia Fonseca National Institute for Space Research (INPE)
  • Thales Sehn Korting National Institute for Space Research (INPE)
  • Margareth Simões Embrapa Solos
  • Hugo do Nascimento Bendini National Institute for Space Research (INPE)
  • Ricardo Cartaxo Modesto Souza National Institute for Space Research (INPE)

Resumo

With the amount of multitemporal and multiresolution images growing exponentially, the number of image segmentation applications is recently increasing and, simultaneously, new challenges arise. Hence, there is a need to explore new segmentation concepts and techniques that make use of the data temporality. This study describes a spatio-temporal segmentation that adapts the traditional region growing technique to detect homogeneous regions in space and time in optical remote sensing images. Tests were conducted by considering the Dynamic Time Warping measure as the homogeneity criterion. Study cases on high temporal resolution for sequences of MODIS and Landsat-8 OLI vegetation indices products and comparisons with other distance measurements provided satisfactory outcomes.

Downloads

Não há dados estatísticos.

Referências

ADAMS, R.; BISCHOF, L. Seeded region growing. Pattern Analysis and Machine Intelligence, IEEE Transactions on, IEEE, v. 16, n. 6, p. 641

BINS, L. S.; FONSECA, L. M. G.; ERTHAL, G. J.; II, F. M. Satellite imagery segmentation: a region growing approach. Simpósio Brasileiro de Sensoriamento Remoto, Imagem Multimidia, São Paulo. Proceedings, CD Salvador, Bahia, Brazil, v. 8, n. 1996, p. 677

BLASCHKE, T. Towards a framework for change detection based on image objects. Göttinger Geographische Abhandlungen, v. 113, p. 1

BLASCHKE, T. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, v. 65, n. 1, p. 2

BONTEMPS, S.; BOGAERT, P.; TITEUX, N.; DEFOURNY, P. An object-based change detection method accounting for temporal dependences in time series with medium to coarse spatial resolution. Remote Sensing of Environment, Elsevier, v. 112, n. 6, p. 3181

BORIAH, S. Time series change detection: algorithms for land cover change. Tese (Doutorado)

BOULILA, W.; FARAH, I. R.; ETTABAA, K. S.; SOLAIMAN, B.; GH

BRAZIL. Sectoral plan for climate mitigation and adaptation. Ministry of agriculture, Livestock and Food Supply. Brasilia, 2011.

BRUZZONE, L.; SMITS, P. C.; TILTON, J. C. Foreword special issue on analysis of multitemporal remote sensing images. Geoscience and Remote Sensing, IEEE Transactions on, IEEE, v. 41, n. 11, p. 2419

COSTA, W. S.; FONSECA, L. M. G.; KORTING, T. S.; SIM

CHU, S.; KEOGH, E.; HART, D.; PAZZANI, M. Iterative deepening dynamic time warping for time series. In: Proceedings of the 2002 SIAM International Conference on Data Mining. Philadelphia, PA: Society forIndustrial and Applied Mathematics, p. 195

DESCL

DEY, V.; ZHANG, Y.; ZHONG, M. A review on image segmentation techniques with remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, ISPRS, Viena, Austria, XXXVIII, p. 31

DRAGUT, L.; CSILLIK, O.; EISANK, C.; TIEDE, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, v. 88, p. 119

DRAGUT, L.; TIEDE, D.; LEVICK, S. R. ESP: a tool to estimate scale

DURO, D.; FRANKLIN, S.; DUB

EECKHAUT, M. V. D.; KERLE, N.; POESEN, J.; HERVáS, J. Object-oriented identification of forested landslides with derivatives of single pulse lidar data. Geomorphology, v. 173

FREITAS, R. d.; ARAI, E.; ADAMI, M.; FERREIRA, A. S.; SATO, F. Y.; SHIMABUKURO, Y. E.; ROSA, R. R.; ANDERSON, L. O.; RUDORFF, B. F. T. Virtual laboratory of remote sensing time series: visualization of MODIS EVI2 data set over South America. Journal of Computational Interdisciplinary Sciences, v. 2, n. 1, p. 57

GOMEZ, C.; WHITE, J. C.; WULDER, M. A. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sensing of Environment, Elsevier, v. 115, n. 7, p. 1665

HARALICK, R. M.; SHAPIRO, L. G. Image segmentation techniques. In: Technical Symposium East. Arlington, VA: International Society for Optics and Photonics, 1985.

HUETE, A.; DIDAN, K.; MIURA, T.; RODRIGUEZ, E. P.; GAO, X.; FERREIRA, L. G. Overview of the radiometric and biophysical performance of the modis vegetation indices. Remote Sensing of Environment, Elsevier, v. 83, n. 1, p. 195

IM, J.; JENSEN, J.; TULLIS, J. Object-based change detection using correlation image analysis and image segmentation. International Journal of Remote Sensing, Taylor & Francis, v. 29, n. 2, p. 399

JIANG, Z.; HUETE, A. R.; DIDAN, K.; MIURA, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, Elsevier, v. 112, n. 10, p. 3833

JUSTICE, C.; TOWNSHEND, J.; VERMOTE, E.; MASUOKA, E.; WOLFE, R.; SALEOUS, N.; ROY, D.; MORISETTE, J. An overview of MODIS land data processing and product status. Remote sensing of Environment, Elsevier, v. 83, n. 1, p. 3

LAMBIN, E. F.; LINDERMAN, M. Time series of remote sensing data for land change science. Geoscience and Remote Sensing, IEEE Transactions on, IEEE, v. 44, n. 7, p. 1926

MAUS, V.; CAMARA, G.; CARTAXO, R.; RAMOS, F. M.; SANCHEZ, A.; RIBEIRO, G. Q. Open boundary dynamic time warping for satellite image time series classification. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, p. 3349

NIEMEYER, I.; MARPU, P.; NUSSBAUM, S. Change detection using object features. In: BLASCHKE, T.; LANG, S.; HAY, G. (Ed.). Object-Based Image Analysis. Springer Berlin Heidelberg, (Lecture Notes in Geoinformation and Cartography). p. 185

OLIVEIRA, J. C. d. Índice para avaliação de segmentação (IAVAS): uma aplicação em agricultura. Dissertação (Mestrado - Instituto Nacional de Pesquisas Espaciais, 160 p. São José dos Campos, 2002.

PAPE, A. D.; FRANKLIN, S. E. MODIS-based change detection for Grizzly Bear habitat mapping in Alberta. Photogrammetric Engineering & Remote Sensing, American Society for Photogrammetry and Remote Sensing, v. 74, n. 8, p. 973

PETITJEAN, F.; INGLADA, J.; GAN

PETITJEAN, F.; INGLADA, J.; GAN

SAKOE, H.; CHIBA, S. A dynamic programming approach to continuous speech recognition. In: Proceedings of the seventh international congress on acoustics. Budapest: Akademiai Kiado, v. 3, p. 65

SAKOE, H.; CHIBA, S. Dynamic programming algorithm optimization for spoken word recognition. In: Acoustics, Speech and Signal Processing, IEEE Transactions on. New York, NY: IEEE, v. 26, n. 1, p. 43

SCHIEWE, J. Segmentation of high-resolution remotely sensed data-concepts, applications and problems. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, Natural Resources Canada, v. 34, n. 4, p. 380

THOMPSON, J. A.; LEES, B. G. Applying object-based segmentation in the temporal domain to characterise snow seasonality. ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, v. 97, p. 98

TUCKER, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, Elsevier, v. 8, n. 2, p. 127

TUCKER, C. J.; PINZON, J. E.; BROWN, M. E.; SLAYBACK, D. A.; PAK, E. W.; MAHONEY, R.; VERMOTE, E. F.; SALEOUS, N. E. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, Taylor & Francis, v. 26, n. 20, p. 4485

Publicado
2018-12-31
Como Citar
COSTA, W. S.; FONSECA, L. M. G.; KORTING, T. S.; SIMÕES, M.; BENDINI, H. DO N.; SOUZA, R. C. M. Segmentation of Optical Remote Sensing Images for Detecting Homogeneous Regions in Space and Time. Revista Brasileira de Cartografia, v. 70, p. 1779-1801, 31 dez. 2018.